




1. Introduction

In this paper we continue our investigation [2,9-13]

into the usefulness of the quadtree [3-7]as a data structure for

image processing. We investigate the concept of distance (1,81

and attempt to formulate a definition and metric which are

applicable to quadtrees. Such a concept is useful for computing

properties of an image such as its skeleton as well as for

applying operations such as propagation and shrinking [8].

Section 2 contains a brief definition of the representation

used. In Section 3 we present a brief review of the concept

of distance and its application to the quadtree. in addition,

we discuss some properties of a quadtree which will be

seen to limit the amount of work necessary in computing the

distance transform of a quadtree. Sections 4-6 contain an

algorithm for computing the Chessboard distance transform for

an image represented by a quadtree and an analysis of its exe-

cution time. The algorithm is presented using a variant of

ALGOL 60.

4t



2. Definitions and notation

We assume that the given image is a 2n by 2n array of

unit square "pixels". The quadtree is an approach to image

representation based on a successive subdivision of the array

into quadrants. In essence, we repeatedly subdivide the array

into quadrants, subquadrants,... until we obtain blocks (pos-

sibly single pixels) which consist entirely of l's or O's.

This process is represented by a tree of out-degree 4 in which

the root node represents the entire array, the four sons of the

root node represent the quadrants, and the terminal nodes cor-

respond to those blocks of the array for which no further sub-

division is necessary. For example, Figure lb is a block

decomposition of the region in Figure la while Figure lc is the

corresponding quadtree. In general, BLACK and WHITE square

nodes represent blocks consisting entirely of l's and O's

respectively. Circular nodes, also termed GRAY nodes, denote

non-terminal nodes.

Each node in a quadtree is stored as a record containing

seven fields. The first five fields contain pointers to the

node's father and its four sons, labeled NW, NE, SE, ind SW.

Given a node P and a son I, these fields are referenced as

FATHER(P) and SON(P,I) respectively. At times it is useful

to use the function SONTYPE(P) where SONTYPE(P)=Q iff

4SON(FATHER(P),Q)=P. The sixth field, NODETYPE, describes the



contents of the block of the image which the node represents--

i.e., BLACK, WHITE, or GRAY. The seventh field, DIST, indi-

cates the distance to the nearest WHITE node according to the

specified distance metric. Thii field is only meaningful for

BLACK nodes. A WHITE node is said to have distance zero.

Let the four sides of a node's block be called its N, E,

S, and W sides. They are also termed its boundaries and at

times we speak of them as if they are directions. Figure 2

shows the relationship between the quadrants of a node's block

and its boundaries. The specification of the spatial relation-

ships between the various sides is facilitated by use of

the functions OPSIDE, CSIDE, and CCSIDE. OPSIDE(B) is a side

facing side B; e.g., OPSIDE(N)=S. CSIDE(B) and CCSIDE(B) cor-

respond to the sides adjacent to side B in the clockwise and

counterclockwise directions respectively; e.g., CSIDE(N)=E

and CCSIDE(N)=W. We also define the following predicates and

functions to aid in the expression of operations involving a

block's quadrants and boundaries. ADJ(B,I) is true if and

only if quadrant I is adjacent to boundary B of the node's

block, e.g., ADJ(E,SE) is true. REFLECT(B,I) yields the SONTYPE

value of the block of equal size that is adjacent to side B of a

block having SONTYPE value I; e.g., REFLECT(N,SE)=NE, REFLECT(E,SE)

=SW, REFLECT(S,SE)=NE, and REFLECT(W,SE)=SW. COMMONSIDE(Q1,Q2)



indicates the boundary of the block containing quadrants Qi

and Q2 that is common to them (if Q1 and Q2 are not adjacent

brother quadrants, then the value of COMMONSIDE(Ql,Q2) is un-

defined); e.g., COMMONSIDE(SE,SW)=S while COMMONSIDE(NW,SE)

is undefined. QUAD(Sl,S2) is the quadrant bounded by boundaries

S1 and S2 (if S1 and S2 are not adjacent boundaries, then

QUAD(Sl,S2) is undefined); e.g., QUAD(S,E)=SE while QUAD(S,N)

is undefined. Similarly, OPQUAD(QUAD(Sl,S2)=QUAD(OPSIDE(Sl),

OPSIDE(S2)).

For a quadtree corresponding to a 2n by 2
n array we say that the

root is at level n, and that a node at level i is at a distance

of n-i from the root of the tree. In other words, for a node

at level i, we must ascend n-i FATHER links to reach the root

of the tree. Note that the farthest node from the root of the

tree is at level k 0. A node at level 0 corresponds to a

single pixel in the image. Also we say that a node is of size

2S if it is found at level S in the tree--i.e., it has a side

of length 2S.



3. Distance

For an image represented by a binary array, we can define

a function d that takes pairs of points into non-negative

numbers. It is called a metric, or a distance function, if

for all points p, q, and r the following relations are satis-

fied.

(1) d(p,q) o, and d(p,q)=0 if and only if p=q (positive definiteness)

(2) d(q,p)=d(p,q) (symmetry)

(3) d(p,r) 'd(p,q)+d(q,r) (triangle inequality)

Given the points p=(px,Py) and q=(qx,qy) we now examine some

of the more common metrics. The most commonly used metric is

the Euclidean distance

dE(p,q) = V(pxqx)Z+(p_q)z

Two other metrics which are used in image processing are the

Absolute Value metric, or the City Block distance,

dA(p 'q) = Ipx-qX1 + ip y-qy I

and the Maximum Value metric, or the Chessboard distance,

dM(pq) = max{Ipx-qxI, yqy }

The set of points, q, having dE(Pq) ft are those points con-

tained in a circle centered at p having radius t. Similarly,

dA(pq)st yields a diamond, centered at p, with side length

t/2, and dM(Pq) st yields a square, centered at p, with side

length 2t.

For an image represented by a quadtree we use the same

metrics. The only difference is that the points for which the



.- 1

metrics are defined are centers of blocks. We also define

the distance transform T for a quadtree to be a function that

yields for each BLACK block in the quadtree the distance (in

the chosen metric) from the center of the block to the nearest

point which is on a BLACK-WHITE border. More formally, letting

x be the center of a BLACK block B, z be a point on the

border of a WHITE block W, and only using F intermediately

as the distance to a particular WHITE block's border, we have:

F(B,W) = min d(x,z)
z

T(B) = min F(B,W)
W

We say that T of a WHITE block is zero and that the border of the

space represented by the quadtree of the image is BLACK.

Notice that the distance transform is not defined in terms of

a center to center distance. This is done to avoid a bias

against large size WHITE adjacent blocks and moreover it will

be seen to enable us to restrict the number of nodes visited

while computing it.

Given blocks P and Q, we say that Q is a neighbor of P

when both of the following conditions are satisfied.

(1) P and Q share a common border, even if only a corner.

(2) If Q is a BLACK or WHITE block, then its size is greater

than or equal to that of P, while if it is a GRAY block,

then it and P are of equal size.

For example, block R in Figures lb and lc has neighbors 0, NN,

00, Q, HH, PP, MM, and 8. A block has a maximum of eight



neighbors, in which case they are all of equal size (e.g.,

block 0 in Figure lb), and a minimum of five neighbors. The

minimum is obtained by observing that a node cannot be adja-

cent to two nodes of greater size or opposite sides (e.g.,

given node P, and nodes Q and R adjacent to its east and west

sides respectively,then nodes Q and R cannot be both greater in

size than P). Thus a node can have at most two larger sized

neighbors adjacent to its non-opposite sides and two of these

neighbors can subsume at most three additional neighbors, thereby

requiring at least three more neighbors (e.g., for node D in

Figure lb, AA subsumes the NW, N, and NE neighbors; C subsumes

the W and SW neighbors; the remaining neighbors are E, F, and

DD in directions S, SE, and E respectively. We can now prove

the following theorem which aids in understanding the amount of

work involved in computing the distance transform for any metric.

Theorem 1: For any BLACK block in the image, its neighbors

cannot all be BLACK.

Proof: One of the neighbors of the block, say P, must be GRAY

or WHITE since otherwise merging would have taken place and P

would not be in the image (i.e., P would be part of a bigger

BLACK block).

Q.E.D.

Theorem 1 makes the Chessboard distance metric especially

esattractive. It means that for a BLACK block of size 2S , say P,

the center of the WHITE block whose border is nearest to P



!

(hereinafter referred to as the nearest WHITE block) must be

found at a distance of <3-2 S---i.e., within a square centered

at P of side length 3-2S . In fact, the worst case arises when

the nearest WHITE block is a block of minimum size (i.e., a

single pixel) adjacent to the furthest boundary of P's neigh-

boring GRAY block (e.g., WHITE block EE with respect to

BLACK block N in Figure lb). Notice that none of P's neigh-

boring BLACK blocks need be taken into consideration in

computing P's Chessboard distance transform since the value

would have to be at least 3 -2s
- 1 (e.g.,BLACK blocks O,Q, and R with

respect to BLACK block N in Figure lb). Thus Theorem I means

that when computing the Chessboard distance transform of a

quadtree, for each node corresponding to a BLACK block we only

need to consider its GRAY neighboring nodes. Figure 3a illu-

strates the worst case in terms of the number of blocks that

need to be examined--i.e., BLACK block 1 is surrounded by rings

of BLACK blocks of decreasing size.

Theorem 1 can also be used to constrain the amount of work

needed to compute other distance transforms. In the case of

the Euclidean distance transform given BLACK node P of size 2

the nearest WHITE block is at a distance <3 "2S-I. . Similarly,

when a City Block distance transform is used the maximum dis-

tance is <3.2 s These values are all derived analogously.

Unfortunately, we cannot say that larger sized neighbors

need not be taken into consideration when computing the

Euclidean and City Block distance transforms. That this is



true can be seen by examining Figure 4 which illustrates the

regions within which Theorem 1 stipulates that the nearest WHITE

block be found. For example, given BLACK block A of size 2S, in

the case of both the Euclidean and City Block distance, block B

may be the nearest WHITE block to block A. This may require

visiting an eastern neighbor of block A of size 25+1. On the

other hand, when Chessboard distance is used, block C is the

nearest to block A and, in fact, no neighboring blocks of

greater size ever need to be visited. Thus we see that the

Euclidean and City Block distances may lead to more than eight

neighboring blocks of equal size being visited or even to blocks

of greater size.

Note that our definition of distance treats non-existent

neighbors (i.e., on the other side of the border of the space

represented by the quadtree) as BLACK and of equal size. This

is consistent with the definition of the Chessboard distance

transform as yielding for each BLACK node in the quadtree the

distance from the center of the block to the nearest point which

is on the border between a BLACK and a WHITE node.

In the remainder of this paper we focus our attention on

the Chessboard distance transform due to its computational

simplicity. This simplicity arises from the property of the

Chessboard distance metric that the set of points q such that

d(p,q)st is a square,rather than a circle or a diamond as is

true for the Euclidean and City Block distance metrics respec-

tively.



4. Algorithm

The Chessboard distance transform algorithm traverses the

quadtree in postorder (i.e., the sons of a node are visited

first). Recalling the definition of a neighbor given in Section

3, we have that for each BLACK node of size 2S , its eight neigh-

bors in the N, NE, E, SE, S, SW, W, and NW directions may have to

be explored in determining the nearest WHITE node. If any of

the neighbors is WHITE, then the minimum distance is 2
S - 1 and

we cease processing. Neighboring BLACK nodes do not affect

the value of the Chessboard distance transform since they

result in a minimum transform value of 3-2S - I which exceeds

the theoretical maximum. Thus the heart of the algorithm

lies in processing GRAY nodes.

The main procedure is termed CHESSBOARD DIST and is invoked

with a pointer to the root of the quadtree representing the

image and an integer corresponding to the log of the diameter

of the image (e.g., n for a 2n by 2n image array). CHESSBOARDDIST

traverses the tree and controls the exploration of the eight

neighbors of each BLACK node.

GTEQUALADJNEIGHBOR locates a neighbor along a specified

direction (e.g., N, E, S, or W). If the node is on the edge

of the image, then no neighbor exists in the specified direction

and NULL is returned (e.g., the western neighbor of node C in

Figure lb). If the node is not on the edge of the image and



no neighboring BLACK or WHITE node exists, then a pointer to a

GRAY node of equal size is returned (.e.g., the eastern neighbor

of node 1 in Figure 3a). In such a case, procedure DISTADJACENT

continues the search by examining the subquadrants of the adja-

cent GRAY node. We first examine the nodes corresponding to the

subquadrants adjacent to the side of the node being processed

(e.g., subquadrants NW and SW of the eastern neighbor of node

1 in Figure 3a). If either node is WHITE, then a closest

WHITE node in the specified direction has been found. If both

nodes are GRAY, then we recursively apply DISTADJACENT to the

corresponding subquadrants. If both nodes are BLACK, then we

examine the remaining two subquadrants in a similar manner

(e.g., subquadrants NE and SE of the eastern neighbor of node

1 in Figure 3a).

GTEQUALCORNERNEIGHBOR locates a neighbor adjacent to a

specified corner (e.g., NE, SE, SW, or NW). If the node is on

the edge of the image, then no neighbor exists in the specified

corner and NULL is returned (e.g., the NW neighbor of

node C in Figure lb). If the node is not on the edge of

the image and no neighboring BLACK or WHITE node exists,

then a pointer to a GRAY node of equal size is returned (e.g.,

the NE neighbor of node 1 in Figure 3a). In such a case, pro-

cedure DISTCORNER continues the search by examining the sub-

quadrants of the adjacent GRAY node. We first examine the nodes

corresponding to the subquadrant which is adjacent to the corner

of the node being processed (e.g., subquadrant SW of the NE



.1

neighbor of node 1 in Figure 3a). If the node is WHITE, then

a closest node in the specified direction has been found. If

the node is GRAY, then we recursively apply DISTCORNER to the

subquadrant. If the node is BLACK, then we recursively examine

the three remaining subquadrants in the following manner. We apply

DISTADJACENT to the BLACK node's adjacent subquadrants in

a direction which is adjacent to the BLACK node (e.g.,

DISTADJACENT is applied to the NW and SE subquadrants of the

NE neighbor of node 1 in Figure 3a). We also apply DISTCORNER

to the non-adjacent subquadrant (e.g., the NE subquadrant of

the NE neighbor of node 1 in Figure 3a).

As an example of the application of the algorithm, consider

the region given in Figure la. Figure lb is the corresponding

block decomposition while Figure lc is its quadtree represen-

tation. All of the BLACK nodes have labels ranging from A to

R while the WHITE nodes have labels ranging between AA and PP.

The GRAY nodes have labels ranging between 1 and 11.

The BLACK nodes are labeled in the order in which their adja-

cencies are explored by CHESSBOARDDIST. Figure ld contains

the Chessboard distance transform corresponding to Figure lb.



procedure CHESSBOARDDIST (P ,LEVEL);

/* Given a quadtree rooted at node P spanning a 2tLEVEL by

* 2tLEVMI space, f ind the Chessboard distance of each BLACK

node to its closest WHITE node. WHITE nodes are assigned

distance 0*

begin

value node P;

node Q

value integer LEVEL;

integer C;

quadrant I;

direction D;

if GRAY(P) then

begin

for I in {'NW','NEI, 'SW,- SE I} do

CHESSBOARDDIST(SON(P,I) ,LEVEL-1);

end

else if BLACK(p) then

begin

C-2 +LEVEL;

do

begin

QO-GTEQUAL ADJ NEIGHBOR(P,D);

D-if NULL(Q)or BLACK(Q) then C

else if WHITE(Q) then0

else DIST ADJACENT(Q,QUAD(OPSIDE(D)ICCS IDE (D))

QUAD(OPSIDE(D) ,CSIDE(D)),

2t(LEVEL-l) 0,C);



if c,40 then

begin

Q-GTEQUALCORNER NEIHBOPr=(,CS(DE~(D)));

D-if NULL(Q) or BLACK(Q) then C

else if WHITE(Q) then 0

.7 else DISTCORNER(Q,D,CSIDE(D) ,2t (LEVEL-i),

D-CSIDE (D);

end;

end

until C=O or D='N';

DIST(P)-C+2t(LEVEL-l);

end

else DIST(P)4-O; 1* a WHITE node *

end;



node procedure GTEQUAL ADJNEIGHBOR (P, D);

/* Return the neighbor of node P in horizontal or vertical direc-

tion D. If such a node does not exist, then return NULL */

beg in

value node P;

node Q;

value direction D;

if not NULL(FATHER(P)) and ADJ(D,SONTYPE(P)) then

/* Find a common ancestor */

Q-GTEQUALAD J_NEIGHBOR (FATHER (P),D)

else Q-FATHER(P);

/* Follow the reflected path to locate the neighbor */

return (if not NULL(Q) and GRAY(Q) then SON(Q,REFLECT(D,SN(YPEP)))

else Q);

end;

integer procedure DISTADJACENT(P,QQ2 ,W, B,C);

/* Given a subquadtree rooted at node P spanning a 2.W by 2-W space,

the distance of the closest WHITE node to the border formed

by quadrants 01 and Q2 of P. B is a lower bound for the

distance. C is the minimum distance obtained so far */

begin

value node P;

value quadrant Ql,Q2;

value integer B,C,W;

return (if BIC then C /* The minimum has already been found */



else if WHITE(P) then B

else if BLACK(P) then C

else if BLACK(SON(P,Ql)) and BLACK(SON(P,Q2)) then

DISTADJACENT(SON(p,OPQUAD(Ql)) ,QlQ2,W/2,B+W

01STADJACENT(SON(P,OPQUAD(Q2)) ,QlQ2,

W/2,B+W,C))

else DISTADJACENT(SON(P,Q2) ,Ql,Q2,W/2,B,

DXSTADJACENT(SON(P,Ql),Ol,,Q2,W/2,B,C)));

end;

node procedure GTEQUAL CORNERNEIGHBOR(P,C);

1* Return the neighbor of node P in diagonal direction C. if

such a node does not exist, then return NULL *

begin

value node P;

node Q;

value quadrant C;

if not NULL(FATHER(P)) and SONTYPE(P)$OPQUAD(C) then

if SONTYPE(P)=C then Q-GTEQUALCORNERNEIGHBOR(FATHER(P),C)

else Q4-GTEQUAL ADJ NEIGHBOR(FATHER(P) ,COMMONSIDE (SONTYPE(P),C))

else Q-FATHER(P);

/* Follow the opposite path to locate the neighbor *

return (if not NULL(Q) and GRAY(Q) then SON(Q,OPQUAD(SONTYPE(P)))

else Q);

end;



integer procedure DISTCORNER(P,D1, D2,W,B,C);

1* Given a subquadtree rooted at node P spanninq a 2-W by 2-W suace,

return the distance of the closest WHITE node to the corner

formed by quadrant OPQUAD(QUAD(D1,D2)) of p. B is a lower bound

for the distance. C is the minimum distance obtained so far. ~

begin

value node P;

value direction Dl,D2;

value integer B,C,W;

intger TEMP;

if CkD then return (C) /* The minimum has already been found ~

else if WHITE(P) then return(B)

else if BLACK(P) then return(C)

else____

begin

TEMP-DISTCORNER(SON (P,OPQUAD (QUAD (Dl,D2) )),Dl,D2,w/2,,C);

TEMP4-DIST ADJACENT(SON(P,QUAD(Dl,OPSIDE(D2))),

OPQUAD (QUAD (D1, D2) ),

QUAD (OPSIDE (Dl) ,D2) ,W/2,B+W,TEMP);

TEMP-DISTADJACENT(SON(PQUAD(OPSIDE(D1) ,D2)),

QUAD(Dl,OPSIDE(D2)),

OPQUAD(QUAD(D1,D2)) ,W/2,B+W,TEMP);

TEMP4-DISTCORNER(SON(P,QUAD(D1,D2) ,Dl,D2,W/2,B+W,TEMP);

return(TEMP);

end;

end;



.1

5. Analysis

The running time of the Chessboard distance transform

computation algorithm, measured by the number of nodes visited,

depends on the time spent locating WHITE nodes and on the size

of the quadtree. Theorem 1 guarantees that we only need to

examine a maximum of eight neighbors and find their WHITE pro-

geny with a minimum distance. This is accomplished by procedures

GTEQUALADJ-NEIGHBOR, DISTADJACENT, GTEQUALCORNERNEIGHBOR,

and DISTCORNER. For each BLACK node, each procedure is invoked

a maximum of four times. The amount of work performed by these

procedures is obtained by considering the number of nodes that

are visited whenever a neighbor and its progeny are searched.

Recall that we must find the neighbor, and if it is GRAY, then

visit the nearest WHITE node of smaller size. In the worst

case we are at level n-l, with a GRAY neighbor, and all the

nearest WHITE nodes are at level 0 and at the maximum distance.

In such a case we will have to visit 2n+- 2 nodes in the case

of a horizontal or vertical neighbor and 2 n+2-2(2n+l) nodes in

the case of a diagonal neighbor. For example, consider Figure

5, where n=3 and nodes are labeled in the order in which

the neighbors of node A and their progeny have been visited

starting with the northern neighbor and proceeding clockwise;

4we visit the north neighbor and its progeny of the block

labeled A (i.e., blocks B, C, D, E, F, G, H, I, J, K, and four

GRAY nodes on of which is a common ancestor) and the NE neighbor

i-



and its progeny (i.e., blocks L, M, N, 0, P, Q, R, S, T, U,

V, .W, X, and five GRAY nodes one of which is a common ancestor).

In the following we analyze the average execution time of

the Chessboard distance computation algorithm. Our analysis

assumes a 2n by 2 n random image in the sense that a node is

equally likely to appear in any position and level in the quad-

tree. This means that we assume that all configurations of

adjacent nodes of varying sizes have equal probability. This

is different from the more conventional notion of a random

image which implies that every block at level 0 (i.e., pixel)

has an equal probability of being BLACK or WHITE. Such an as-

sumption would lead to a very low probability of any nodes cor-

responding to blocks of size larger than 1. Clearly, for such

an image the quadtree is the wrong representation. We first

derive the average number of nodes visited by GTEQUALADJ_

NEIGHBOR and DISTADJACENT. Next we perform a similar analysis

for the number of nodes visited by GTEQUALCORNERNEIGHBOR and

DIST-CORNER.

Lemma 1: The average of the minimum number of nodes visited by

each invocation of GTEQUALADJNEIGHBOR and DISTADJACENT is 6.

Proof: Given a node P at level i and a horizontal or vertical

n-i n-i-direction D, there are 2 (2 -1) possible positions for node

4P and a neighbor at level i and direction D. Of these

n-i n-i-ni2 (2 -1) neighbor pairs, 2 i-20 have their nearest common

ancestor at level n, 2n-i 21 at level n-l,... and 2 n 2 n-i-1



at level i+l. For each node at level i having a common ancestor

at level j, the maximum number of nodes that will be visited

by GTEQUALADJNEIGHBOR and DISTADJACENT is
i-i k(j-i) + (j-i) + 4 E 2 = 2(j-i-2) + 2 i+2
k=O

This is obtained by observing that the common ancestor is at

a distance of j-i and that a node at level i has a maximum of

2i WHITE nodes at a maximum distance from it in a specified

direction (all appearing at level 0). For example, consider

the N neighbor of node 1 in Figure 3a where i=2. The sum

reflects the fact that for each GRAY node at level k>0, four

nodes must be visited (two BLACK and two GRAY). Assuming that

node P is equally likely to occur at any level i and at any of

the 2 n-i(2 n-i-) positions at level i, then the average of the

maximum number of nodes visited by GTEQUALADJNEIGHBOR and

DIST-ADJACENT is

n-l n in-j i+2
z Z 2 n 2 (2(j-i-2)+2

i=O j=i+ln- 1  (i)

Z 2n - i (2 n-_1)
i=O

(1) can be rewritten to yield

n-1 n-l-i 2n i+2
E E 22-2i-l-J (2 (j-l)+2

i=0 j=0 (2)

Z 2 (21-1)
ji=l



The numerator of (2) can be simplified as follows:

n-i n-i-i n2-- + n-i n-i-i 2n2- nilj
E 2 i2jl +2 ) (-)+

i=0 j=0i=O j=O

n-i n2 n-i-i +n-i 2ni+i n-i-1I

i=-O j=O 2i 2i i=O j=0 23

(3)

But 2 (4)-

j0 2 n-l-i(4
j=0 - 2 -

Also E ( 1(5
j=0 2i 2 n- 

(5

Substituting (4) and (5) into (3) yields

nE1(2 2n-2i(2 -n+l-i 2(- 1 ))22n-i+i 2(

i=O 2 n-l-i 2 n-i 2n-

E 1 (2 nil(2 n-(n+l-i))-2 ni1(2 n-i )+2 n2(2 n-1))
i=O

i=O

+2 n-~ 22n-i+2_2 n2

n-Z1i n-i+2 -2 il+i2n-i+1- n+2

i=O

= 2n+2 n-i n+i n-l 1 n+l n-i n+

i=O 2i-O 2i=O 21

2 22n+2. 2 (l - -L.)-n.2 n+ .2(l -1)+ 2 n+I (2 - fl -i)2 n+2

n+3 _,) n n,) n 2 n n+2 2 n-l

= 2n+ (2n -4 n(2n +)4 (2n (n+l))-*

= 2
2n+ 3-(2 n+i)-2 n+

2 _4 (6)



The denominator of (2) can be simplified as follows:

n n 2i
Z 2 (2 -1) = Z (2 2 )
i=l i=O

n inE. 4 - 2i

i=O i=O
• 4~n+ l -

4 n_1 - (2n+l_l)3

n 1 2n+2_3
or Z 2 (21-1) = (2 n 2n+i+2 ) (7)

i= 1

Substituting (6) and (7) into (2) yields
22n+3- (2n+l)2n+2-4 12 (n-l)-2n+l
2,-2n+2-. 2 = 6 - n +1
(2 n -2 + 2 ) 2n3-2

<6

Q.E.D.

Lemma 2: The average of the maximum number of nodes visited

by each invocation of GTEQUALCORNER NEIGHBOR and DISTCORNER

is less than 8.

Proof: Given a node P at level i and a diagonal direction C,

there are (2n-i- 1 )2 possible positions for node P and a neigh-

bor at level i in direction C. Of these (2n-i-1 ) 2 neighbor

pairs, 40. (2.(2- i-l)-l) have their nearest common ancestor

at level n, 4 1(2• (2 n-i-l-)-l) at level n-l,... and

4n-i-l. (2.(2n-i-(n-i-l)-l)-l) at level i+l. In order to see

this, consider Figure 6 where a grid is shown for n=3. If all

BLACK and WHITE nodes are at level 0, then for a neighbor in

the NE direction we see that nodes along the fifth row and



fourth column have their nearest common ancestor at level 3I (i.e., 13 nodes labeled 1-13). Continuing the process for the

NW, NE, SW, and SE quadrants of Figure 6 we find that all

neighbor pairs contained exclusively within these quadrants

have their nearest common ancestor at a level r2. In parti-

cular, for the NW quadrant, nodes along the third row and

second column have their nearest common ancestor at level 2

(i.e., 5 nodes labeled 14-18). The NE, SW, and SE quadrants are

analyzed in a similar manner. This process is applied to

the four subquadrants of the quadrants to obtain the neighbor

pairs whose nearest common ancestor is at level 1. Note that

we had to consider every row in the image when analyzing diago-

nal neighbor pairs whereas we only needed to consider one

row or column when analyzing neighbor pairs in the N, E, S,

and W directions. This is necessary because for diagonal

neighbors each row in the image has a different number of neigh-

bor pairs with a common ancestor at a given level while this

number is constant for each row or column when considering

neighbor pairs in the horizontal and vertical directions.

For each node at level i having a nearest common ancestor

at level j, the maximum number of nodes that will be visited

by GTEQUALCORNERNEIGHBOR and DISTCORNER is

4i-i k-12l
(j-i)+(j-i) + Z (4+2-4 kZ 2(j-3i-4)+2 i + 3

k=O Z=0

LI



This is obtained by observing that the common ancestor is at

a distance of j-i and that a node at level i has a maximum ofI2~ i-l1 WHITE nodes at a maximum distance from it in a specified

diagonal direction (all appearing at level 0.For example,

consider the NE neighbor of node 1 in Figure 3a where i=2.

The sum reflects the fact that for each GRAY node at level

k>O, four nodes must be visited (one BLACK and three GRAY).

Two of the blocks spanned by the GRAY nodes are visited by

use of DIST-ADJACENT while the block corresponding to the



remaining GRAY node is visited by recursively reapplying

DISTCORNER. Assuming that node P is equally likely to occur

at any level i and at any of the (2 ni..1) 2 positions at level

i, then the average of the maximum number of nodes visited by

GTEQUAILCORNERNEIGHBOR and DIST-CORNER is

n- n 4n (2* (2 )-) (2(j-3i-4)+2i3

i=O j=i+l
,- n-i 2

Z (2 -1)
i=O

n-i n 2- n j i+ 3
z Z (2 2n-i+1-3. 22n (2(j-3i-4)+2

_i=O j=i+l (8)

i=O

(8) can be rewritten to yield

n-i n-i-i n2- n2--j i+ 3
E (2  -iJ3 .2 ni 2  ) (2(j-2i-3)i2

i=O j=O 9
n i-1)2

Z (2-)
i= 1

The numerator of (9) can be simplified as foilows:

n-i n-i-i 2-ij 2- -- j iI.3
z Z (2 2n - 3 .22---2 (2(j-2i-3)+2

i=O j=O

n-i 2n n-i-i -2i- 2i2j ) i+2
= 2 ni E (2 -3. -2-- (j-2i-3+2 )

i=O j=0

n-i n12 n-i- I j2-2 i+2 1-i32i+2
= 22ni2 E J2i+ 3 2j+ (10)
i=O j=0O3



n-l-i
But E -L = 2 n+l-i (Ii)

j=0 2i 2n-
l-i

n-l-i 2 i 3 +2 i+2 i+3 1
E 2 = (-4i-6+2 )( (12)

j=0 2n 2

n-- 1 4 3(n-l-i)+4)
(13)

j=0 2 2j+2 - 9 2 2n-2-2i
n-l-i -2i-3+2 1 i (

E 2+ = (-2i-3+2i + ) (1- )(14)+2 2n-2i

j=O 2  2

Substituting (11), (12), (13), and (14) into (10) yields

n-i 2n+1-2i n+l-i i+3 1
Z 2 (2 -l-i + (-4i-6+2 ) (1 - )

i=O 2n-1-i 2n-

_ 3 3(n-i-i)+4) (-2i-3+2 i)(1-
9 2 2n-2-2i2n-2i

n-i 2 2n+1-2i +1-i n-i i+3 n-i
= E 2n2i ( 6 " 2 2n -2i3 2 n (n+l-i)+3.2 (2 -4i-6) (2 -1)i=0 3.-2i

-2 2 n- 2 i+3(n-i-i)+4+3- (2i+3-2 i+2) ( 2 2n-2i-1 ))

n-I l~..n22 2n-2in n+ l-i_ 3 2 
n+ l - i  n+i-i 2n-i+3_ 1 2 .2 2n-2i(6-3n 2 +3i.2 +32

i=O

-18 .2
2n-2i-3- 2n+3+12i. 2n-i+ 1 8 2

+6i-2 2n-2i+9 2 2n-2i-3- 2 2n-i+2-6i- 9 + 3 - 2 i+2)

n-i 2 2n-i+2_ 22n-2i n+3 . n-i
= (3 (4+6i)" -3-2 +6 - (3i-n+2).2

' i=0
= +3 2i+2 +3n-9i-8)

2 2n+2 nnl 1 n-i((3"22 +6(2-n)2 ) E _ -- 2 nn 2n ii=O 2 4 22Z--- - 6"2 2--
i=0 21 i=O 22i i=O 2

n-i n-i n-i 2
+18-2 E -, + 12 E 21-9 E i- 3 n* 2 n+3 + 3 n -8n)

i=O 21 i=O i=OFi



-) -.- l1_-i22

2 2n+2 n 2n4_,- 2 ((32 +6(2-n)2 ) - 2 - 1L) -4- 22n4 -1i)

2 ~ ( n 2n

2n 4 (3(n-i)+4) 2n n+n
(- 92n ) + 18.2 (2 - 2 )+1 2 .( 2 n-1)

9 n+3 2_n. (n-1)-3n-2 +3n -8n)

22n_ 22n 4( 2 2n-1)
2(( 3 "22n+2+6 ( 2 -n) 2 n)' 2 (---4- 2 2n ) - (22 n - 3n - 1)

+1-2 n( -n-2 -3

n-2nn-1 n 9 2 9 n+3 2+18 22 )+12(2 -1)- + -n 3n-2 +3n _8n)

n+2+ n_ 6, 2n_,) n

2((6 - 2 n+2 +12(2-n)) ( 2 nl) - -A-2 fl-.) • 22+sn + -- +36-2 n

-36n-36+12"2n-12 - 92 + 9n -3n-2n+3n2-8n)

2 2-n3n92 117 -8n
- 2(4822n + 144. 2n 1 0 8n. 2n - 9 -7 - 192) (15)

The denominator of (9) can be simplified as follows:

n n n nS2i-i) 2 = - 2i_
E (2 1)2 E 2 2 2 2 E 2 + E 1

i=l i=O i=O i=O

n i- n+l-

i= 4-2(2 -1)+n+1i=O

4 n+l-1 2n+2+2+n+l

3

n i-.2 1 .2n+2 n+2
or Z (2i_ = 5(22232n +3n+8) (16)

i=1

Substituting (15) and (16) into (9) yields

2(48.2 +1 4 4 "2n-0 8n.22 -9 n2  17 92)

1 2nn -7-19
V2 2 2-3n8

2n 2 n+2- n_ 2_
Si~( 2-n2_3.2n++3n+8)

8" 22n+2+2 4 " 2 n+2 72n 2n-3n2-39n-128
22n+2-_3.2n+2+3n+8



8 + 482n+2- 7 2n. 2n-3n
2 63n-192

22n+2_ 3 -2n+2+3n+8

= 8 (72n-192)2n+3(n2+21n+64)
2 2n+2-3 2n+2+ 3n 8

<8

Q.E.D.

It is useful to obtain the number of nodes in the quadtree.

Letting B and W correspond to the number of BLACK and WHITE,

respectively, leaf nodes in the quadtree we have

Lemma 3: The maximum number of nodes in a quadtree having B
4

and W leaf nodes is bounded by I • (B+W).

Proof: See Lemma 1 in [10].

We can now prove our main result.

Theorem 2: The average execution time of the Chessboard dis-

tance transform computation algorithm is of order B+W.

Proof: From Lemmas 1 and 2 we have that for each side and corner

of a BLACK node, GTEQUALADJNEIGHBOR, DISTADJACENT, GTEQUAL

CORNERNEIGHBOR, and DISTCORNER result in an average maximum

of 6+8=14 nodes being visited. There are four sides and corners

for each BLACK node. Thus these four procedures contribute 4.B-14.

From Lemma 3 we have that the number of node 6the quadtree is

bounded by i .(B+W). This quantity correlates with the work per-

formed by procedure CHESSBOARD DIST since each node in the



j! quadtree is visited by the traversal. Summing up these values

i we have 4-B'14 + 4 (B+W) - I(43-B+W).

Q.E.D.

Notice that the amount of work is essentially proportional to

the complexity of the image--i.e., to the number of BLACK

nodes.



6. Concluding remarksI An algorithm has been presented for computing the Chess-
board distance transform for a binary image represented by a

quadtree. The algorithm's running time was shown to have an

average execution time of order (B+W) where B and W correspond

to the number of blocks comprising the objects and the back-

ground of the image respectively. It should be noted that

the number of BLACK nodes (i.e., the image complexity) domi-

nates the execution time of the algorithm.

The algorithm and the analysis are guite similar to those

employed in the computation of the total perimeter [10] and

also for the first phase of a connected component labeling

algorithm 1111 for an image represented by a quadtree. The dif-

ference is in part due to the GTEQUAL_-CORNER-NEIGHBOR analysis. The

similarity should not be surprising because in the former we

are searching for adjacencies involving BLACK and WHITE nodes

while in the latter we are searching for adjacencies involving

BLACK and BLACK nodes. In the case of the distance transform

one is also searching for BLACK and WHITE adjacencies except

that unlike the perimeter, we do not cease the search when

an adjacent BLACK node is found.

Our algorithm is essentially a bottom-up tree traversal.

An alternative algorithm might use a top down method; see [13],

where a different notion of distance is used. The difficulty



with such a method is that it requires the use of more

storage so that the distance of a GRAY node to its various

sides can be stored. An intermediate approach is one that

visits the adjacencies of a BLACK node in a breadth-first fashion

rather than depth-first as done here. In such a case we would

explore the neighbors of a BLACK node in a ring-like manner.

For example, given node P of size 2S , we would first visit all

of the sons of its neighbors that are adjacent to the border

of P. If all are BLACK and of the same size, then we start

visiting a ring at a further distance. For the image given

in Figure 3a this would mean that in order to obtain the dis-

tance transform for node 1, we would first visit nodes 2 through

13. If they are all BLACK, we would then visit nodes 14 through

59, etc. This is in contrast with our current approach that

locates the closest WHITE node in the northern direction, NE,....

The disadvantage of the breadth-first approach is in the amount

of extra bookkeeping that is necessary.

The algorithm can be distinguished from previous work on

quadtrees [2,9] in the development of a GTEQUALCORNERNEIGBHOR

procedure for locating neighbors along the corner as well as

its analysis. This obviates the need for possibly having to

invoke GTEQUAL ADJNEIGHBOR more than once (e.g., in Figure lb,

to find the SE neighbor of node C, we locate C's southern

neighbor G followed by locating G's eastern neighbor H; however,

to find the SE neighbor of node M, we only need to locate M's



I.1

southern neighbor, Q, since it is larger than M and is also

its SE neighbor). The analysis shows that GTEQUALCORNERNEIGHBOR

requires somewhat more work than GTEQUALADJNEIGHBOR.

Note that procedure CHESSBOARDDIST attempts to locate all

eight neighbors of each BLACK node. Instead, we could check

if there is any overlap and avoid invoking GTEQUALADJNEIGHBOR

or GTEQUALCORNERNEIGHBOR for the overlapping neighbor (e.g.,

in Figure lb the eastern neighbor of node I is L which overlaps

with the SE neighbor of I). However, the effect of such an im-

provement is limited since the number of neighbors ranges between

five and eight.

It should be clear that the distance transform can be com-

puted for other metrics than the Chessboard. Recall that we

chose the Chessboard metric due to its simplicity and the fact

that its minimum distance region is a square. The results of

Theorem 1 intimate that distance in terms of image width may

not be an appropriate measure. Perhaps a node distance is more

appropriate. Such a distance measure would reflect the number

of nodes that need to be traversed when attempting to make a

transition from one BLACK node to its "nearest" WHITE node.

This is a subject for future research.

A ,



References

1. R. 0. Duda and P. E. Hart, Pattern Classification and
Scene Analysis, Wiley Interscience, New York, 1973.

2. C. R. Dyer, A. Rosenfeld, and H. Samet, Region representa-
tion: boundary codes from quadtrees, Computer Science TR-732,
University of Maryland, College Park, Maryland, February 1979,
to appear in Communications of the ACM.

3. G. M. Hunter, Efficient computation and data structures
for graphics, Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, Princeton, University,
Princeton, NJ, 1978.

4. G. M. Hunter and K. Steiglitz, Operations on images using
quadtrees, IEEE Transactions on Pattern Analysis and Machine
Intelligence 1, 1979, 145-153.

5. G. M. Hunter and K. Steiglitz, Linear transformation of pic-
tures represented by quadtrees, Computer Graphics and Image
Processing 10, 1979, 289-296.

6. A. Klinger and C. R. Dyer, Experiments in picture repre-
sentation using regular decomposition, Computer Graphics
Image Processing 5, 1976, 68-105.

7. A. Klinger and M. L. Rhodes, Organization and access of
image data by areas, IEEE Transactions on Pattern Analysis
and Machine Intelligence 1, 1979, 50-60.

8. A. Rosenfeld and A. C. Kak, Digital Picture Processing,
Academic Press, New York, 1976.

9. H. Samet, Region representation: quadtrees from boundary
codes, Computer Science TR-741, University of Maryland,
College Park, Maryland, March 1979, to appear in
Communications of the ACM.

10. H. Samet, Computing perimeter of images represented by
quadtrees, Computer Science TR-755, University of Maryland,
College Park, Maryland, April 1979.

11. H. Samet, Connected component labeling using quadtrees,
Computer Science TR-756, University of Maryland, College
Park, Maryland, April 1979.



12. H. Samet, A distance transform for images represented byquadtrees, Computer Science TR-780, University of Maryland,
College Park, Maryland, July 1979.

13. M. Shneier, A path-length distance transform for quadtrees,
Computer Science TR-794, University of Maryland, College Park,
Maryland, July 1979.

L.I



Ic
c 40

4- J

=A M

oD CD

0 Im

C3 u

-Ju =

0 C

LLL
LL 4 )

0 I

cm 41 IA(

(a m 4Uj

.41 U 4

LW

41~

0-4; t
S- M (

go1
0V

cc to



4!
N

NW NE

W -SW SE E

S

Figure 2. Relationship between a block's four quadrants and its boundaries.

a. Image.

433

'922 25b hsbaddsac
0€,,,',, ,/ ' 2</ 3s a nfomaoftheiag

1 I2I I

2 0 0 0

0 / 2 0

0.0

.2 Z2f 2., '

Figure 3. An image illustrating the maximt'm number of nodes that needllto be visited when computing the Chessboard distance transform

value for node 1.



" iA ° S d M = -

E A 3.2 S

Figure 4. Regions within which the closest WHITE node to BLACK node A
must lie for several metrics.

F G [J K 0 P V X

W17 3 22

S 14 15 16 9 1? 29 21

T 18 10 23

1 23 4 5 67

27 11 32

24 -5 26 12 29 30 31

23' 13 33

Figure 5. Image illustrating the worst Figure 6. Sample grid illustrating nodes
case for N and NE neighbors at level 0 whose nearest common
when n=3. ancestor is at level > 2 when

attempting to locate a NE
neighbor.



UNCLASSSIFTKm
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A DISTANCE TRANSFORM FOR IMAGES REPRESENTED Technical Report

BY QUADTREES 6. PERFORMING G. REPORT NUMBER
TR-780

7. AUTHO R(s) "S. CONTRACT OR GRANT N4UMBE7# ')

Hanan Samet DAAG-53-76C-013-

9PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
/ AREA & WORK UNIT NUMBERS

Computer Science Center
University of Maryland
CollPC, Park, MD 20742

ICONTROLLiNG OFFICE NAME AND ADDRESS 12. REPORT DATE""

U.S. Army Night Vision Laboratory 13 July 1979

Fort Belvoir, VA 20060 - NUMBEROFPAGES39
14. MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Office) 15. SECURITY CLASS. (of thie report)

UNCLASSIFIED
ISa. DECLASSIFICATIOIN ' OWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

Il. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide it neceseary and Identify by block number)

Image processing

Pattern recognition
Quadtrees
Distance transforms

20. ABSTRACT (Continue on reverse aide It neceeeary and identify by block number)

4!,The concept of distance used in binary array representations of images
is adapted to a quadtree representation. The Chessboard distance metric
is shown to be particularly suitable for the quadtree. A Chessboard distance
transform for a quadtree is defined as Lhe minimum distance in the plane from
each BLACK node to the border of a WHITE node. An algorithm is presented
which computes this transform by only examining the BLACK node's adjacent
and abutting neighbors and their progeny, Analysis of the algorithm shows

DD I FA. 1473 EDITION OF I NOV 65 IS OBSOLETE
UN CLA TION O T H PSE CURITY CLASSIFICATION 0-'-!'HIS PAGE (When Date Enteredl



UNlCLASSIFIED
SECURITY CLASSIFICATION OF THIgS PAGC(Whaii Data Entored)

that its average execution time is proportional to the1- number of leaf nodes in the quadtree.

UNCLASSIFIEp

SECURtITY CLASSIFICATION Of THIS8 PAGU8,.. ee.


